PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS.
منابع مشابه
FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment.
microRNA abundance has been shown to depend on the amount of the microprocessor components or, in some cases, on specific auxiliary co-factors. In this paper, we show that the FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, associated with familial forms of Amyotrophic Lateral Sclerosis (ALS), contributes to the biogenesis of a specific subset of microRNAs. Among them, species w...
متن کاملRBM45 competes with HDAC1 for binding to FUS in response to DNA damage
DNA damage response (DDR) is essential for genome stability and human health. Recently, several RNA binding proteins (RBPs), including fused-in-sarcoma (FUS), have been found unexpectedly to modulate this process. The role of FUS in DDR is closely linked to the pathogenesis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects nerve cells in the brain and ...
متن کاملExploring the Role of FUS Mutants from Stress Granule Incorporation to Nucleopathy in Amyotrophic Lateral Sclerosis: A Dissertation
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by preferential motor neuron death in the brain and spinal cord. The rapid disease progression results in death due to respiratory failure, typically within 3-5 years after disease onset. While ~90% of cases occur sporadically, remaining 10% of ALS cases show familial inheritance, and the number of gene...
متن کاملRethinking ALS: The FUS about TDP-43
Mutations in TDP-43, a DNA/RNA-binding protein, cause an inherited form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two recent studies (Kwiatkowski et al., 2009; Vance et al., 2009) now report that mutations in FUS/TLS, another DNA/RNA-binding protein, also trigger premature degeneration of motor neurons. TDP-43 and FUS/TLS have striking structural and functional simil...
متن کاملFUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014